skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Hanyue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the analysis of four unambiguous planets and one possible planet from the subprime fields (Γ ≤ 1 hr−1) of the 2017 Korea Microlensing Telescope Network (KMTNet) microlensing survey, to complete the KMTNet AnomalyFinder planetary sample for the 2017 subprime fields. They are KMT-2017-BLG-0849, KMT-2017-BLG-1057, OGLE-2017-BLG-0364, and KMT-2017-BLG-2331 (unambiguous), as well as KMT-2017-BLG-0958 (possible). For the four unambiguous planets, the mean planet–host mass ratios,q, are (1.0, 1.2, 4.6, 13) × 10−4, the median planetary masses are (6.4, 24, 76, 171)M, and the median host masses are (0.19, 0.57, 0.49, 0.40)M, respectively, found from a Bayesian analysis. We have completed the Anomaly Finder planetary sample from the first 4 yr of KMTNet data (2016–2019), with 112 unambiguous planets in total, which nearly tripled the microlensing planetary sample. The “sub-Saturn desert” ( log q = 3.6 , 3.0 ) found in the 2018 and 2019 KMTNet samples is confirmed by the 2016 and 2017 KMTNet samples. 
    more » « less
  2. Abstract We complete the analysis of planetary candidates found by the KMT AnomalyFinder for the 2017 prime fields that cover ∼13 deg2. We report three unambiguous planets: OGLE-2017-BLG-0640, OGLE-2017-BLG-1275, and OGLE-2017-BLG-1237. The first two of these were not previously identified, while the last was not previously published due to technical complications induced by a nearby variable. We further report that a fourth anomalous event, the previously recognized OGLE-2017-BLG-1777, is very likely to be planetary, although its light curve requires unusually complex modeling because the lens and source both have orbiting companions. One of the three unambiguous planets, OGLE-2017-BLG-1275, is the first AnomalyFinder discovery that has a Spitzer microlens parallax measurement,πE≃ 0.045 ± 0.015, implying that this planetary system almost certainly lies in the Galactic bulge. In the order listed, the four planetary events have planet-host mass ratiosqand normalized projected separationssof ( log q , s ) = ( 2.31 , 0.61 ) , (−2.06, 0.63/1.09), (−2.10, 1.04), and (−2.86, 0.72). Combined with previously published events, the 2017 prime fields contain 11 unambiguous planets with well-measuredqand one very likely candidate, of which three are AnomalyFinder discoveries. In addition to these 12, there are three other unambiguous planets with large uncertainties inq. 
    more » « less
  3. Abstract The gravitational microlensing technique is most sensitive to planets in a Jupiter-like orbit and has detected more than 200 planets. However, only a few wide-orbit (s> 2) microlensing planets have been discovered, wheresis the planet-to-host separation normalized to the angular Einstein ring radius,θE. Here, we present the discovery and analysis of a strong candidate wide-orbit microlensing planet in the event OGLE-2017-BLG-0448. The whole light curve exhibits long-term residuals to the static binary-lens single-source model, so we investigate the residuals by adding the microlensing parallax, microlensing xallarap, an additional lens, or an additional source. For the first time, we observe a complex degeneracy between all four effects. The wide-orbit models withs∼ 2.5 and a planet-to-host mass ratio ofq∼ 10−4are significantly preferred, but we cannot rule out the close models withs∼ 0.35 andq∼ 10−3. A Bayesian analysis based on a Galactic model indicates that, despite the complicated degeneracy, the surviving wide-orbit models all contain a super-Earth-mass to Neptune-mass planet at a projected planet-host separation of ∼6 au and the surviving close-orbit models all consist of a Jovian-mass planet at ∼1 au. The host star is probably an M or K dwarf. We discuss the implications of this dimension-degeneracy disaster on microlensing light-curve analysis and its potential impact on statistical studies. 
    more » « less
  4. Abstract We present the analysis of seven microlensing planetary events with planet/host mass ratios q < 10 −4 : KMT-2017-BLG-1194, KMT-2017-BLG-0428, KMT-2019-BLG-1806, KMT-2017-BLG-1003, KMT-2019-BLG-1367, OGLE-2017-BLG-1806, and KMT-2016-BLG-1105. They were identified by applying the Korea Microlensing Telescope Network (KMTNet) AnomalyFinder algorithm to 2016–2019 KMTNet events. A Bayesian analysis indicates that all the lens systems consist of a cold super-Earth orbiting an M or K dwarf. Together with 17 previously published and three that will be published elsewhere, AnomalyFinder has found a total of 27 planets that have solutions with q < 10 −4 from 2016–2019 KMTNet events, which lays the foundation for the first statistical analysis of the planetary mass-ratio function based on KMTNet data. By reviewing the 27 planets, we find that the missing planetary caustics problem in the KMTNet planetary sample has been solved by AnomalyFinder. We also find a desert of high-magnification planetary signals ( A ≳ 65), and a follow-up project for KMTNet high-magnification events could detect at least two more q < 10 −4 planets per year and form an independent statistical sample. 
    more » « less
  5. Abstract We complete the publication of all microlensing planets (and “possible planets”) identified by the uniform approach of the KMT AnomalyFinder system in the 21 KMT subprime fields during the 2019 observing season, namely, KMT-2019-BLG-0298, KMT-2019-BLG-1216, KMT-2019-BLG-2783, OGLE-2019-BLG-0249, and OGLE-2019-BLG-0679 (planets), as well as OGLE-2019-BLG-0344 and KMT-2019-BLG-0304 (possible planets). The five planets have mean log mass ratio measurements of (−2.6, −3.6, −2.5, −2.2, −2.3), median mass estimates of (1.81, 0.094, 1.16, 7.12, 3.34)MJup, and median distance estimates of (6.7, 2.7, 5.9, 6.4, 5.6) kpc, respectively. The main scientific interest of these planets is that they complete the AnomalyFinder sample for 2019, which has a total of 25 planets that are likely to enter the statistical sample. We find statistical consistency with the previously published 33 planets from the 2018 AnomalyFinder analysis according to an ensemble of five tests. Of the 58 planets from 2018–2019, 23 were newly discovered by AnomalyFinder. Within statistical precision, half of the planets have caustic crossings, while half do not; an equal number of detected planets result from major- and minor-image light-curve perturbations; and an equal number come from KMT prime fields versus subprime fields. 
    more » « less